191 research outputs found

    Toll-like receptors and innate immune responses in systemic lupus erythematosus

    Get PDF
    A series of discoveries over the past several years has provided a new paradigm for understanding autoimmunity in systemic lupus erythematosus. The discoveries of pattern recognition receptors and of how these receptors can be recruited into autoimmune responses underpin this paradigm. The implications of these observations continue to unfold with ongoing investigation into the range and specificity of pattern recognition receptors, into how immune complexes containing nucleic acids trigger these receptors, into how endogenous macromolecular 'danger signals' stimulate innate immune responses, and into the effect of pattern recognition receptor activation on various cell types in initiating and perpetuating autoimmunity. The development of clinical trials using therapeutic agents that target components of the innate immune system suggests that these advances may soon culminate in new medications for treating patients with systemic lupus erythematosus

    Automated analysis of 16-color polychromatic flow cytometry data maps immune cell populations and reveals a distinct inhibitory receptor signature in systemic sclerosis

    Full text link
    Background. The phenotypic profiles of both peripheral blood and tissue-resident immune cells have been linked to the health status of individuals with infectious and autoimmune diseases, as well as cancer. In light of the promising clinical trial results of agents that block the Inhibitory Receptor (IR) Programmed Death 1 (PD-1) axis, novel flow cytometric panels that simultaneously measure multiple IRs on several immune cell subsets could provide the distinct IR signatures to target in combinational therapies for many disease states. Also, due to the paucity of human samples, larger (14+ color) β€˜1-tube’ panels for immune cell characterization ex vivo are of a high value in translational studies. Development of fluorescent-based panels offer several advantages as compared with analogous mass cytometric methods, including the ability to sort multiple populations of interest from the sample for further study. However, automated platforms of multi-dimensional single cell analysis that allow objective and comprehensive population characterization are severely underutilized on data generated from large polychromatic panels. Methods. A 16-color flow cytometry (FCM) panel was developed and optimized for the simultaneous characterization and purification of multiple human immune cell populations on a 4- laser BD FACSARIA II cell sorter. FCM data of samples obtained from healthy subjects and individuals with systemic sclerosis (SSc) were loaded into Cytobank cloud, then compensated and analyzed with SPADE clustering algorithm. The viSNE algorithm was also employed to compress the data into a 2D map of phenotypic space that was subsequently clustered using SPADE. For comparison, the FCM data were also analyzed manually using FlowJo software. Results. Our novel 16-color panel recognizes CD3, CD4, CD8, CD45RO, CD25, CD127, CD16, CD56, Ξ³Ξ΄TCR, vΞ±24, PD-1, LAG-3, CTLA-4, and TIM-3; it also contains a CD1d-tetramer and a live-dead dye (with CD19 and CD14 included as a combined dump channel). This panel allows combinational IR signatures to be determined from CD4+ T, CD8+ T, Natural Killer (NK), invariant Natural Killer (iNKT), and gamma delta (Ξ³Ξ΄) immune cell subsets within one sample. We have successfully identified all subsets of interest using automatic SPADE and viSNE algorithms integrated into Cytobank services, and demonstrated a distinctive phenotype of IR distribution on healthy versus systemic sclerosis subject groups. Conclusions. Methods of automatic analysis that were originally developed for processing multi-dimensional mass cytometry can be applied to polychromatic FCM datasets and provide robust results, including subset identification and distinct IR signatures in healthy compared to diseased subject groups

    Limited Systemic Sclerosis Patients with Pulmonary Arterial Hypertension Show Biomarkers of Inflammation and Vascular Injury

    Get PDF
    Pulmonary arterial hypertension (PAH) is a common complication for individuals with limited systemic sclerosis (lSSc). The identification and characterization of biomarkers for lSSc-PAH should lead to less invasive screening, a better understanding of pathogenesis, and improved treatment.Forty-nine PBMC samples were obtained from 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene expression was measured for each sample. The levels of 89 cytokines were measured in serum from a subset of subjects by Multi-Analyte Profiling (MAP) immunoassays. Gene expression clearly distinguished lSSc samples from healthy controls, and separated lSSc-PAH from lSSc-NoPAH patients. Real-time quantitative PCR confirmed increased expression of 9 genes (ICAM1, IFNGR1, IL1B, IL13Ra1, JAK2, AIF1, CCR1, ALAS2, TIMP2) in lSSc-PAH patients. Increased circulating cytokine levels of inflammatory mediators such as TNF-alpha, IL1-beta, ICAM-1, and IL-6, and markers of vascular injury such as VCAM-1, VEGF, and von Willebrand Factor were found in lSSc-PAH subjects.The gene expression and cytokine profiles of lSSc-PAH patients suggest the presence of activated monocytes, and show markers of vascular injury and inflammation. These genes and factors could serve as biomarkers of PAH involvement in lSSc

    The HLA-B*35 allele modulates ER stress, inflammation and proliferation in PBMCs from Limited Cutaneous Systemic Sclerosis patients

    Get PDF
    Introduction\ud HLA-B*35 is associated with increased risk of developing pulmonary hypertension in SSc patients. We previously reported that HLA-B*35 induces endothelial cell dysfunction via activation of ER stress/UPR and upregulation of the inflammatory response. Because PBMCs from lcSSc-PAH patients are also characterized by activation of ER stress/UPR and inflammation, the goal of this study was to assess whether the presence of HLA-B*35 contributes to those characteristics.\ud \ud Methods\ud PBMCs were purified from healthy controls (n = 49 HC) and lcSSc patients, (n = 44 with PAH, n = 53 without PAH). PBMCs from each group were stratified for the presence of HLA-B*35. Global changes in gene expression in response to HLA-B*35, HLA-B*8 or empty lentivirus were investigated by microarray analysis in HC PBMCs. Total RNA was extracted and qPCR was performed to measure gene expression.\ud \ud Results\ud ER stress markers, in particular the chaperones BiP and DNAJB1 were significantly elevated in PBMC samples carrying the HLA-B*35 allele. IL-6 expression was also significantly increased in HLA-B*35 lcSSc PBMCs and positively correlated with ER stress markers. Likewise, HMGB1 was increased in HLA-B*35-positive lcSSc PBMCs. Global gene expression analysis was used to further probe the role of HLA-B*35. Among genes downregulated by HLA-B*35 lentivirus were genes related to complement (C1QB, C1QC), cell cycle (CDNK1A) and apoptosis (Bax, Gadd45). Interestingly, complement genes (C1QC and C1QB) showed elevated expression in lcSSc without PAH, but were expressed at the low levels in lcSSc-PAH. The presence of HLA-B*35 correlated with the decreased expression of the complement genes. Furthermore, HLA-B*35 correlated with decreased expression of cyclin inhibitors (p21, p57) and pro-apoptotic genes (Bax, Gadd45) in lcSSc B35 subjects. FYN, a tyrosine kinase involved in proliferation of immune cells, was among the genes that were positively regulated by HLA-B*35. HLA-B*35 correlated with increased levels of FYN in lcSSc PBMCs.\ud \ud Conclusions\ud Our study demonstrates that HLA-B*35 contributes to the dysregulated expression of selected ER stress, inflammation and proliferation related genes in lcSSc patient PBMCs, as well as healthy individuals, thus supporting a pathogenic role of HLA-B*35 in the development of PAH in SSc patients

    Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?

    Full text link
    Objective Because aberrant Wnt signaling has been linked with systemic sclerosis (SSc) and pulmonary fibrosis, we sought to investigate the effect of Wnt‐10b on skin homeostasis and differentiation in transgenic mice and in explanted mesenchymal cells. Methods The expression of Wnt‐10b in patients with SSc and in a mouse model of fibrosis was investigated. The skin phenotype and biochemical characteristics of Wnt‐10b–transgenic mice were evaluated. The in vitro effects of ectopic Wnt‐10b were examined in explanted skin fibroblasts and preadipocytes. Results The expression of Wnt‐10b was increased in lesional skin biopsy specimens from patients with SSc and in those obtained from mice with bleomycin‐induced fibrosis. Transgenic mice expressing Wnt‐10b showed progressive loss of subcutaneous adipose tissue accompanied by dermal fibrosis, increased collagen deposition, fibroblast activation, and myofibroblast accumulation. Wnt activity correlated with collagen gene expression in these biopsy specimens. Explanted skin fibroblasts from transgenic mice demonstrated persistent Wnt/β‐catenin signaling and elevated collagen and α‐smooth muscle actin gene expression. Wnt‐10b infection of normal fibroblasts and preadipocytes resulted in blockade of adipogenesis and transforming growth factor Ξ² (TGFΞ²)–independent up‐regulation of fibrotic gene expression. Conclusion SSc is associated with increased Wnt‐10b expression in the skin. Ectopic Wnt‐10b causes loss of subcutaneous adipose tissue and TGFβ‐independent dermal fibrosis in transgenic mice. These findings suggest that Wnt‐10b switches differentiation of mesenchymal cells toward myofibroblasts by inducing a fibrogenic transcriptional program while suppressing adipogenesis. Wnt‐10b–transgenic mice represent a novel animal model for investigating Wnt signaling in the setting of fibrosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86862/1/30312_ftp.pd

    Increased Frequency and Compromised Function of T Regulatory Cells in Systemic Sclerosis (SSc) Is Related to a Diminished CD69 and TGFΞ² Expression

    Get PDF
    Contains fulltext : 80239.pdf (publisher's version ) (Open Access)BACKGROUND: Regulatory T cells (Tregs) are essential in the control of tolerance. Evidence implicates Tregs in human autoimmune conditions. Here we investigated their role in systemic sclerosis (SSc). METHODS/PRINCIPAL FINDINGS: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 20) or diffuse cutaneous SSc (dcSSc, n = 48). Further subdivision was made between early dcSSc (n = 24) and late dcSSc (n = 24) based upon the duration of disease. 26 controls were studied for comparison. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, FoxP3, CD127, CD62L, GITR, CD69 using flow cytometry. T cell suppression assays were performed using sorted CD4CD25(high)CD127(-) and CD4CD25(low)CD127(high) and CD3(+) cells. Suppressive function was correlated with CD69 surface expression and TGFbeta secretion/expression. The frequency of CD4(+)CD25(+) and CD25(high)FoxP3(high)CD127(neg) T cells was highly increased in all SSc subgroups. Although the expression of CD25 and GITR was comparable between groups, expression of CD62L and CD69 was dramatically lower in SSc patients, which correlated with a diminished suppressive function. Co-incubation of Tregs from healthy donors with plasma from SSc patients fully abrogated suppressive activity. Activation of Tregs from healthy donors or SSc patients with PHA significantly up regulated CD69 expression that could be inhibited by SSc plasma. CONCLUSIONS/SIGNIFICANCE: These results indicate that soluble factors in SSc plasma inhibit Treg function specifically that is associated with altered Treg CD69 and TGFbeta expression. These data suggest that a defective Treg function may underlie the immune dysfunction in systemic sclerosis

    Stress Granules and RNA Processing Bodies are Novel Autoantibody Targets in Systemic Sclerosis

    Get PDF
    Autoantibody profiles represent important patient stratification markers in systemic sclerosis (SSc). Here, we performed serum-immunoprecipitations with patient antibodies followed by mass spectrometry (LC-MS/MS) to obtain an unbiased view of all possible autoantibody targets and their associated molecular complexes recognized by SSc

    The Pronounced Th17 Profile in Systemic Sclerosis (SSc) Together with Intracellular Expression of TGFΞ² and IFNΞ³ Distinguishes SSc Phenotypes

    Get PDF
    Contains fulltext : 81194.pdf (publisher's version ) (Open Access)BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease where controversy on Th1/Th2 balance dominates. We investigated whether the recently discovered Th17 pattern was present in SSc. METHODOLOGY AND PRINCIPAL FINDINGS: Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 12) or diffuse cutaneous SSc (dcSSc, n = 24). A further arbitrary subdivision was made between early dcSSc (n = 11) and late dcSSc (n = 13) based upon the duration of disease. As a comparator group 14 healthy controls were studied. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, CD45Ro, CD45Ra, IL-23, GITR, CD69 and intracellular expression of IL-17, TGFbeta and IFNgamma using flow cytometry. Levels of IL-17, IL-6, IL-1alpha and IL-23 were measured using Bioplex assays. SSc patients had more and more activated CD4+ cells. In addition, CD4, CD45Ro and CD45Ra cells from all SSc patients highly expressed the IL23R, which was associated with a higher IL-17 expression as well. In contrast, IFNgamma and TGFbeta were selectively up regulated in SSc subsets. In line with these observation, circulating levels of IL-17 inducing cytokines IL-6, IL-23 and IL-1alpha were increased in all or subsets of SSc patients. CONCLUSION AND SIGNIFICANCE: The combination of IL-17, IFNgamma and TGFbeta levels in CD45Ro and CD45Ra cells from SSc patients is useful to distinguish between lSSc, ldSSc or edSSc. Blocking Th17 inducing cytokines such as IL-6 and IL-23 may provide a useful tool to intervene in the progression of SSc

    Cardiac arrhythmias and conduction defects in systemic sclerosis

    Get PDF
    Signs and symptoms of arrhythmias or conduction defects are frequently reported in patients with SSc. These rhythm disorders may have several origins (i.e. related to primary heart involvement, pericardial disease, valvular regurgitation or pulmonary arterial hypertension) and may negatively affect the overall prognosis of these patients. It is therefore important to identify patients at high risk for cardiac arrhythmias with a complete cardiological evaluation and to identify the underlying heart disease, including SSc-related myocardial involvement. In addition, some therapeutic options in SSc patients may differ from those recommended in other population
    • …
    corecore